Facile α -Metallation of Ketone with a Rhodium Porphyrin Complex Under Mild Conditions

Yasuhiro Aoyama, Tohru Yoshida, and Hisanobu Ogoshi Department of Material Science, Technological University of Nagaoka, Kamitomioka, Nagaoka, Niigata 949-54, Japan

Abstract: Acetone, acetylacetone, and ethyl acetoacetate undergo facile and direct metallation at the α -positions of carbonyl groups with a cationic rhodium(III) porphyrin complex under mild conditions.

The organo-transition-metal species having an α -metallocarbonyl or its tautomeric oxo- π -allylmetal structure are important intermediates in synthetic reactions¹ and the biological dehydration of 1,2-diols catalyzed by vitamin B_{12} dependent dehydrases. A typical procedure for the preparation of this type of compounds involves the nucleophilic interaction of low-valent metal centers with α -halo ketones.^{1a} An alternative general method utilizes the electrophilic interaction of M(III) complexes (M = Co, Rh) with alkyl^{2,3} or silyl enol ethers^{1b} as activated ketone derivatives. The direct metallation of ketone, on the other hand, is a rather rare phenomenon; an example is the slow metallation of ketone with some cobalt complexes with one strongly basic axial ligand or under basic conditions.⁴ We have been investigating the C-H activation under mild conditions.⁵ We report here the facile and direct α -metallation of ketone with a cationic rhodium(III) porphyrin complex.⁶

A solution of octaethylporphyrinatorhodium(III) chloride [(OEP)Rh^{III}(Cl)] (0.6 mM) and AgClO₄ (0.8 mM) in dry acetone (50 ml) was stirred under nitrogen at 50°C for 20 min until no further change was observed in the visible spectra. Work-up and chromatography on alumina afforded the acetylmethyl-Rh(III) complex (1 (R = H), eq 1) in a yield of 50%. Its electronic spectrum (CH₂Cl₂) having λ_{max} at 391, 513, and 543 nm was typical of organorhodium OEP complexes⁷ and its IR spectrum (KBr) showed $v_{C=0}$ at 1675 cm⁻¹. The convincing evidence for the structure came from the ¹H NMR spectrum showing a doublet (J = 4 Hz) for

$$(OEP) Rh^{III} (C1) \xrightarrow{AgClO_4} (OEP) Rh^{III} (ClO_4) \xrightarrow{RCH_2 - C - CH_3} (OEP) Rh^{III} - CH - C - CH_3 (1)$$

 CH_2 bonded to 103 Rh (I = 1/2) and a singlet for CH_3 at higher magnetic fields due to the porphyrin ring-current effect.⁷ The silver salt assisted reactions of (OEP)Rh^{III}(Cl) with acetylacetone and ethyl acetoacetate were complete in 2-3 min and gave the corresponding metallation products (<u>1</u> (R = COCH₃) and <u>1</u> (R = CO₂CH₂CH₃), eq 1) in 70 and 65% yields, respectively. ¹H NMR spectra indicated that the internal CH₂ was the site of metallation (Table I).

R in <u>1</u>	yield (%)	¹ H NMR chemical shift ^b (integration)			
		Rh-CH	соснз	со ₂ с <u>н</u> 2сн ₃	^{со} 2 ^{сн} 2 ^{сн} 3
н	50	-5.40 ^C (2H)	-2.31 (3H)	<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
COCH	70	-4.50 [°] (1H)	-1.93 (6Н)		
CO2CH2CH3	65	-4.50 [°] (1H)	-1.80 (3H)	0.89 (2H)	-0.16 (3H)
^a Spectra	were taken	for CDCl, sol	utions. ^b δ	ppm. ^c d (J	J = 4 Hz).

Table I.	Yields and	[⊥] H NMR	Data for	(OEP) Rh ^{III} -CHRCOCH ₂ ^a
----------	------------	--------------------	----------	--

The silver salt was essential for the present metallation of acetone. The role of ClO_4 is that of a noncoordinating counteranion, thus accomodating vacant coordination sites and enhancing the electrophilicity of the central metal, as in the aromatic metallation with the same Rh(III) complex.⁵ It was confirmed independently that (OEP)Rh^{III}(ClO₄) or (OEP)Rh^{III}(BF₄), isolated from the reaction of (OEP)Rh^{III}(Cl) with AgClO₄ or AgBF₄,⁵ attacks acetone to form 1 (R = H) without the participation of a silver salt (eq 1).

REFERENCES AND NOTES

- (a) J. J. Doney, R. G. Bergman, and C. H. Heathlock, <u>J. Am. Chem. Soc.</u>, <u>107</u>, 3724 (1985); (b) Y. Ito, H. Aoyama, T. Hirao, A. Mochizuki, and T. Saegusa, <u>ibid.</u>, <u>101</u>, 494 (1979).
- 2. R. Silverman and D. Dolphin, <u>J. Am. Chem. Soc</u>., <u>98</u>, 4626, 4633 (1976).
- H. Ogoshi, J. Setsune, Y. Nanbo, and Z. Yoshida, <u>J. Organometal. Chem</u>., <u>159</u>, 329 (1978).
- 4. (a) A. Bigotto, G. Costa, G. Mestroni, G. Pellizer, A. Puxeddu, E. Reisenhofer, L. Stefani, and G. Tauzher, <u>Inorg. Chim. Acta Rev.</u>, <u>4</u>, 41 (1970);
 (b) M. E. Kastner and W. R. Scheidt, <u>J. Organometal. Chem.</u>, <u>157</u>, 109 (1978).
- (a) Y. Aoyama, T. Yoshida, K. Sakurai, and H. Ogoshi, <u>J. Chem. Soc., Chem.</u> <u>Commun.</u>, 478 (1983); (b) idem., <u>Organometallics</u>, in press.
- 6. The oxidative-addition reaction of bisdicarbonylrhodium(I) complex of porphyrin to a ketone C-H bond is known; A. M. Abeysekera, R. Grigg, J. Trocha-Grimshaw, and V. viswanatha, J. Chem. Soc., Perkin I, 1395 (1977).
- H. Ogoshi, J. Setsune, T. Omura, and Z. Yoshida, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 6461 (1975).

(Received in Japan 3 September 1985)